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ARTICLE INFO ABSTRACT

A species’ distribution across the landscape is not random, but it is affected by distribution, size, abundance and
connectivity of landscape patches. This spatial configuration of the landscape shapes ecological processes, for
example the location of home ranges, migration routes and migration ability. Landscape metrics describe the
configuration of a landscape quantitatively. While traditional approaches in habitat modelling only consider
environmental attributes at a specific location, the integration of landscape metrics adds more functional in-
formation. In this paper we evaluated a method of directly incorporating a set of landscape metrics as covariates
into a Maxent habitat model. Specifically, we used hexagons as statistical units for the calculation of landscape
metrics. With this method also landscape metrics calculated with vector data sets can be used for SDM. We tested
this approach for the smooth snake (Coronella austriaca) in the Austrian Alps. The experimental designs resulted
in an improvement of the habitat models. Moreover, the results demonstrated the benefits of landscape metrics
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for the model outcomes at different scales.

1. Introduction

For effective conservation planning, it is fundamental to understand
the factors that drive the distribution of species (Rosenzweig, 1995).
Species distribution modelling is thus used in numerous studies that
estimate the present and future habitat ranges of species for biodi-
versity research and conservation biology. The most commonly used
predictors in species distribution models are environmental variables,
like climate, vegetation, soil and elevation (Pulliam, 2000). While these
variables describe the ecological niche at a certain location, they do not
account for the spatial configuration and structure of the landscape. The
spatial context, in which the species is embedded, has an important
influence on ecosystem functions and thus also on habitat suitability
and biodiversity (Walz, 2011). In other words, a species” distribution is
not only determined by its environmental niche, but also by functional
relations in geographic space. We thus argue that species distribution
models become more informative with using landscape metrics as
covariates.

In order to adequately model the local distribution of a specific
animal species, predictive variables need to be selected from an or-
ganism-centred perspective (Cushman et al., 2008; Li and Wu, 2004).
For the analysis of landscape configuration, this implies the choice of an
appropriate scale that matches dispersal processes of the species under
study (Walz, 2011). Scale in this respect is characterised by the spatial

* Corresponding author at: Seeparksiedlung 10/3, 5071 Wals, Austria.

resolution and extent, but also the thematic granularity of land-cover
classes (Lam and Quattrochi, 1992; Turner et al., 2001). Species with
higher space demand and higher mobility are influenced by a larger
extent of landscape than small species with low mobility. So, spatial
grain of habitat perception is a function of body size, what accords to
the decision hierarchy concept of Holling (1992). To represent the ac-
tual driving forces for the distribution of a target species, resolution and
extent thus need to reflect the size of the home ranges of this species
(Holzkdmper et al., 2006; Guisan and Thuiller, 2005). Moreover, the
spatial and the thematic resolution of the model is limited by the
quality of the underlying data to avoid pseudo-accuracy.

Landscape metrics are calculated with a set of algorithms that help
to describe the spatial configuration of landscapes quantitatively.
Therefore, these metrics can be an important - although mostly ne-
glected - factor for species distribution modelling. Adding to the above
conceptual considerations of scale, the use of landscape metrics as
predictors in species distribution models also poses a methodological
challenge if vector data is used. Schindler et al. (2013) and
Turner et al. (2001) have demonstrated that the spatial scale and extent
of a study area affects the performance of landscape metrics. Especially
the response to changing extent is not consistent (Saura and Martinez-
Millan, 2001). Small extents can cause the number of patches of the
same class to drop below statistically meaningful sample sizes and thus
lead to an unpredictable behaviour of metrics (Schindler et al., 2013).
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Some studies have used landscape metrics to complement species
distribution models with additional information after the modelling
process (e.g. Amici et al., 2015; Hasui et al., 2017; Hopkins 2009;
Foltete et al., 2012), to predict species richness (e.g. Schindler et al.,
2013) or to correlate landscape metrics with species occurrence (e.g.
Ippoliti et al., 2013; Westphal et al., 2003). Another possibility to in-
corporate landscape metrics into the modelling process is the “moving
window” approach, which is restricted to raster data sets (e.g. Hagen-
Zanker, 2016; Santos et al., 2019).

In this research, we suggest a novel method to incorporate land-
scape metrics as continuous surfaces derived from vector data sets into
a species distribution model to account for the spatial configuration of
landscapes. So, this method enables the use of vector data sets for
landscape metrics calculations and model building. Specifically, we (1)
calculated landscape metrics for regular, hexagonal cells at different
ecologically meaningful scales for the smooth snake (Coronella aus-
triaca) in the Austrian Alps, (2) incorporated the landscape metrics as
predictors into a species distribution model based on the Maxent al-
gorithm to characterise the niche of Coronella austriaca, and (3) tested
the approach against a model without landscape metrics.

2. Material and methods

The approach of integrating landscape metrics as continuous sur-
faces into the species distribution model of the smooth snake followed a
3-step workflow (Fig. 1): First, occurrence points were pre-processed to
eliminate low precision and clustered points. Second, the most con-
tributing landscape metrics types and scale levels were identified in an
exploratory modelling phase. This step was done on a subset of the
study area (“test areas”) to avoid computational overload. Third, spe-
cies distribution models were computed with the selected environ-
mental and landscape predictors for the whole study area.

2.1. Study species and area

The target species of this study was the smooth snake (Coronella
austriaca). We chose the smooth snake, because the lead author is
herpetologist with a profound knowledge of this colubrid. We thus had
access to an abundant set of recent survey data and also could well
interpret results. Although this snake is distributed across entire
Europe, western Siberia and the Middle East (Volkl and Kisewieter,
2003) it is included in the European Council Directive 92/43/EEC of
21st of May 1992 Annex IV and has been evaluated as being in an
“unfavourable state” in Central and Northern European countries
(Ceirans and Nikolajeva, 2017). Coronella austriaca is a rather small
(mean length between 60-70 cm), non-venomous and secretive snake
that is mainly threatened through habitat loss and fragmentation,
which leads to extinction of populations and reduces the gene flow
between persisting populations. This can cause degeneration of the
remaining populations (Pernetta et al., 2011; Reading, 2012).

C. austriaca is one of the typical elements of the European cultural
landscape and is very ductile in its habitat selection. It inhabits a wide
spectrum of open and half-open landscapes and can be seen as xer-
othermophile species that sometimes also inhabits wet to alternating
wet areas (Volkl and Kisewieter, 2003). All of these habitats are highly
structured landscapes with adequate microhabitats like immature soil,
dry grass, stone and rock and deadwood (Kasewieter, 2002).

The study area is located in the southern ranges of the Eastern Alps
in Carinthia, a province of Austria. It is composed of 15.6% subalpine
and alpine vegetation, 57.6% of different types of forest, 0.3% of wet-
lands, 19.4% agriculture and 7.1% of miscellaneous areas (Hartl et al.,
2001) with an elevation between 384 m in the East and 3798 m in the
West. For this province, a rich set of Coronella austriaca observation
points was available together with a fine-scaled vegetation map at the
scale of 1:50,000, which provided enough accuracy to detect relevant
landscape patterns for this snake. Further, a representative test area was
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delimited, to explore the performance of landscape metrics surfaces
with a computationally less demanding subset. The size and position of
the test area was chosen because of the number of occurrences in the
area and the fact, that it covers lower altitude regions as well as some
subalpine areas (Fig. 2).

2.2. Occurrence data and environmental data

Occurrence data for Coronella austriaca was obtained from the
Herpetofaunistic Database of the Museum of Natural History, Vienna'
and from the Consortium for Nature Conservation, Klagenfurt.? To-
gether, these databases held 1208 occurrence records. In the pre-pro-
cessing, we extracted records that were collected between 1996 and
2016 to ensure a temporal match with the environmental layers. Fur-
ther, metadata was used to filter out locations with a positional in-
accuracy of 100 m or more. Finally, 129 occurrence records were left,
46 of which were located in the test area. In a second pre-processing
step, we filtered the remaining occurrences spatially to reduce bias
through spatial autocorrelation (Boria et al., 2014; Anderson and
Gonzalez, 2011). This is necessary, because biased occurrence records
can lead to overfitted model outputs in Maxent (Peterson et al., 2007),
which means that the model is more complex than the real relationships
between the included environmental variables and the species’ niche
(Peterson 2011). Therefore, only one randomly selected point was kept
in occurrence clusters of 500 m distance. After spatial filtering, 94 oc-
currence points were left in the study area, of which 38 occurrences
were located in the test area.

The current vegetation of Carinthia® with a detection scale of
1:50.000 served as the environmental layer for the computation of
landscape metrics. This vegetation layer was further enriched with
specific habitat information for Coronella austriaca, especially small
water bodies (source: water body network of Carinthia®), wetlands
(source: Map of the current vegetation of Carinthia (Hartl et al., 2001)),
and alpine land-cover (source: the generalized land use of Carinthia®).
The resulting layer contained 51 vegetation classes.

To calculate the different kinds of landscape metrics three hier-
archical levels were used, two of them aggregations of the vegetation
classes: (1) vegetation classes, (2) vegetation types, (3) land cover
classes. The vegetation was aggregated into functional habitat types for
Coronella austriaca like open and half-open landscape types and also wet
to altering wet areas (Volkl and Kédsewieter, 2003). Thus, three ag-
gregation levels were available for further analysis: First, 51 vegetation
classes at the level of plant associations e.g. “secondary spruce forest on
carbonate ground”; second, 24 vegetation types, e.g. “spruce and mixed
spruce forest”; and third, 7 land-cover classes. e.g. “forest”.

Finally, seven climatic layers with a resolution of 250 x 250 m
were acquired for model-building: mean annual global radiation,
average accumulated precipitation, average accumulated summer pre-
cipitation, mean snow cover duration, average start of snow cover,
average end of snow cover, average equivalent temperature in July.*

2.3. Species distribution model

The algorithm that we used to model the distribution of the smooth
snake was Maxent as implemented in Maxent GUI 3.4.1.> Maxent is a
machine learning method, which today is one of the most frequently
used algorithms to model species distribution (Phillips, 2004). It is a
presence-background modelling method that associates known occur-
rences of a species with environmental data in the region of interest.

! Herpetofaunistische Datenbank des Naturhistorischen Museums, Wien.
2 Arge NATURSCHUTZ, Klagenfurt

3 https://data.gv.at/katalog/dataset

* https://data.gv.at/katalog/dataset

5 http://biodiversityinformatics.amnh.org/open_source/maxent/
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Fig. 1. Overview of the most important steps in building the model. (Sample points) First, the sample points (occurrence data of Coronella austriaca) were filtered,
(Test area) second the most adequate landscape metrics and scale levels were identified with exploratory models in the test area and (Final models) third, the final

species distribution models were built for Carinthia for three target scales.
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Fig. 2. The study area in the province of Carinthia, Austria. The area outlined in red is the test area, in which the test models were calculated. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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The resulting model extracts the ecological niche that the target species
can inhabit in the study area and maps it onto geographic space. The
algorithm consistently shows good results, especially for presence-only
data (Merow et al., 2013; Elith et al., 2006).

In Maxent, there are different approaches how to select covariates in
ecological modelling. One recommends reducing correlation between
them to a minimum before starting the modelling process through
correlation analysis, clustering analyses or another reduction method,
because the complex features used by Maxent often produce highly
correlated outputs. Reducing the covariates prior to model building
should result in models that are better interpretable. This corresponds
to the approach of treating Maxent as traditional statistical model
(Renner and Warton, 2013). An alternative approach considers Maxent
as machine learning method and lets the algorithm decide, which
covariates to use for model building through regularization
(Phillips et al., 2006). We followed the latter approach and did not filter
the covariates before model building.

2.4. Regular tesselations

Landscape-level metrics are usually computed with respect to an
entire landscape. The result for landscape metrics calculations is one
number that characterises the whole study area. However, in order to
incorporate the spatial configuration of a landscape as predictor into
the Maxent modelling process, we needed to disaggregate the metrics
into tessellation areas of landscape units. The size of landscape units
thereby needs to account for the multiple spatial scales at which dis-
persal processes are operating. Landscape metrics were calculated for
this small units and afterwards the tessellation areas were converted to
continuous raster files.

To explore the computation of landscape metrics for different spa-
tial scales, we tesselated the test area into multiple hexagonal grids of
different cell sizes (5 ha, 10 ha, 15 ha, 25 ha, 35 ha per hexagon). The
size of the statistical zones defines the scale of analysis. That should be
considered because every analysed phenomenon can have a particular
scale domain where it reveals (Levin, 1992; Turner et al., 1989). To
build organism-centred models for the target species, the size of the
hexagons was on the one hand adjusted to the habitat size requirements
of Coronella austriaca populations, which ranges between 1 ha and
>200 ha (Volkl and Kisewieter, 2003). On the other hand, we ex-
perimented with the size of the hexagons to get an insight on how the
landscape metrics reacted. Boundary patches that extended over two
hexagon zones or more were clipped. In addition to the hexagonal grids,
we delimited the catchment areas of the test area with a mean zone size
of 303 ha to serve as alternative, natural ecological units for the land-
scape metrics computation.

Finally, the landscape metrics tessellation layers were rasterised to a
resolution of 100 m x 100 m. This was the finest resolution to avoid
pseudo-accuracy in the modelling process, taking into account the re-
solution of the vegetation map and location inaccuracies for the ob-
served snake occurrences.

2.5. Choice of candidate landscape metrics

Landscape metrics can be computed at three different levels, for
individual patches (e.g. patch shape), patch classes with respect to a
landscape (e.g. mean patch area or nearest neighbour distance), and the
structure of the mosaic of patches in a landscape (e.g. fragmentation or
connectivity). In this research, we were interested in the characterisa-
tion with respect to the entire landscape. Thus, we selected a set of
class- and landscape-level metrics that were meaningful to describe the
habitat of the smooth snake. In this exploratory phase, a large number
of metrics was computed. As each model was spatially disaggregate, the
calculations proved to be computationally demanding and we thus
limited them to the representative test area described above.

For all statistical layers and the catchment areas, six types of
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landscape metrics were computed with the ZonalMetrics toolbox
(Adamczky and Tiede, 2017) for ArcGIS (Esri, 2011) to quantify im-
portant habitat elements of C. austriaca (Table 1):

1 Area Metrics were calculated for open areas important for C. aus-
triaca of the vegetation types. The result was the percent of the area
of the whole statistical zone taken by the patch.

2 The Largest Patch Index was calculated for the plant associations.
Result: percentage of the total area of the statistical zone taken by
the largest patch.

3 Connectance Metrics for the habitable land cover, the maximum
connectance distance was 500 m. The examined classes (covered
with buildings, planted, grassland, and intensive grassland) were
merged. The resulting values were the number of distinct connected
classes, the percentage of patch area that lies within the range of
connection to the statistical zone and the percentage of the con-
nection zone between the patches in comparison to the statistical
zone.

4 Contrast Metrics were calculated for the habitable land cover. The
analysed classes (one at a time) were covered with buildings, in-
tensive grassland, planted and grassland. The contrast classes were
compact settlement, waterbodies and forest. The resulting value was
the contrast index which is calculated as the percentage of the edge
length of the focus classes shared with the contrast classes.

5 The Shannon Diversity Index was calculated for the plant associa-
tions. This Index considers the number of different patch types and
their abundance.

6 The edge density was computed based on boundaries between ve-
getation classes and the transportation network. We dissolved the
vegetation layer polygons to lines and merged the resulting layer
with the transport network of Carinthia to generate a line kernel
density surface. The decision for a bandwidth is a key step in kernel
density estimation, depending on the smoothing of the resulting
surface (Cai et al., 2013). As a rule of thumb ArcGIS (Esri, 2011)
works with the rule of Silverman (Silverman, 1986), which is based
on a quadratic kernel function. The first surface was calculated with
the suggested bandwidth of 1741.11 m. However, to represent edge
density for C. austrica in an appropriate way, the smoothing should
not be too strong, because the effect of these edges does not expand
to far away from the linear structures. Thus, three more surfaces
with bandwidths of 500 m, 1000 m and 1500 m were created. Based
on a comparison with the line data set we chose the surface with the
1000 m bandwidth and a resolution of 100 m x 100 m for the
modelling process.

For landscape-level metrics like the Largest Patch Index or the
Connectivity metrics, one single landscape metric surface resulted for
each metric. Class-level metrics like the share of open areas resulted in
multiple surfaces, one for each class. Thus, finally 26 landscape metrics
surfaces at six resolutions resulted and were ready to be used as can-
didate predictors for further analyses in the test area.

2.6. Statistical selection of landscape metric surfaces

In this final pre-processing step, we singled out the landscape metric
surfaces, which contributed most to the model, and determined the
most adequate resolutions. To test respective models quantitatively
against the validation data, we did a jack-knife evaluation with a
random test percentage was 25% and a number of background points of
10,000, averaged over 20 iterations.

The assessment of model performance was based on two criteria:
AUC (area under the ROC curve) and omission rate (OR). AUC reflects
the discriminatory ability of a model. It is a measure for the ability, that
a model ranks a random presence locality better than a random back-
ground point (Phillips et al., 2006), where higher values implicate
better models. Omission rate (OR) quantifies overfitting. It ranges
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Table 1
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Overview over the 26 landscape metric surfaces that resulted from the computation of six different types of landscape metrics.

Landscape Metrics (LM) Description

Level of thematic aggregation Number of LM surfaces

Share of open areas
Largest Patch Index
Connectivity

- Connectivity — classes
- Connectivity — habitat
- Connectivity — zone
Contrast

Shannon Diversity Index
Edge Density

percent area occupied by a class
percent area occupied by the largest patch

Number of connected habitable classes

Percent area of the connection zone between the patches

Line kernel density (Cai et al., 2013)

Percent area occupied by a set of connected habitable patches

Percent edge length of the focus classes shared with the contrast classes.
Considers the number of different patch types and their abundance

Vegetation types (only open landscapes) 8
Plant associations 1
Land-cover types 1
Land-cover types 1

Land-cover types

Land-cover types (habitable vs. non-habitable) 12
Plant associations

Plant associations (edges) and transport network 1

between 0 and 1, where lower numbers indicate better model perfor-
mance (Shcheglovitova and Anderson, 2013). Although, the AUC based
on presence-background data is an arguable absolute measure for the
performance of models (Lobo et al., 2008; Warren and Seifert, 2011), it
is adequate to compare models of single species in an identical study
area (Peterson, 2011).

First, we determined the optimal resolution of the hexgrid in the test
area. We computed models with all landscape metric surfaces for each
of the six resolutions, i.e. the five hexgrid tesselations between 5 and
35 ha and the catchment units. The respective AUC and OR values were
compared to identify the resolutions at which models performed best.

Second, we selected the landscape metric surfaces that were most
important for the model predictions. As Maxent is a machine learning
algorithm, we could make use of the regularisation procedure not only
to avoid overfitting, but also to select the most contributing covariates
(Phillips et al., 2006; Elith et al., 2011). Specifically, we used permu-
tation importance to determine the relative importance of predictors.
Permutation importance randomly alters the values of the covariate of
interest among presence and background points. Subsequently, the
drop in the AUC is measured and normalised to the percentage scale.
The larger this drop, the more important is the covariate for the model
prediction (Phillips et al., 2006). Only landscape metric surfaces with a
permutation importance of 4% and more were kept as predictors for the
final model. This threshold simplified the models to a reasonable
amount of detail.

With two adjustments, we tried to avoid overfitting of the model:
First, the model was constrained to linear and quadratic features. More
complex feature combinations allow a better fine tuning, but are po-
tentially very sensitive to a species’ environmental tolerance, which in
turn may lead to overfitted models (Shcheglovitova and Anderson,
2013). Second, we adapted the regularisation multiplier that controls
the intensity of regularization across all features to a value of two. With
this value the chance that the model is overfitted to bias or noise in the
sample points is relatively low (Radosavljevic and Anderson, 2014).

Finally, we assessed how much model predictions differed in geo-
graphic space, even if their overall predictive performance was similar.
The algorithms that we used to quantify geographic similarity were
Schoeners D (Schoener, 1968) and I statistics (Warren et al., 2008).
These performance indicators represent the difference between the
normalised suitability scores per grid cell. The values range from 0 (no
match) to 1 (identical models). While I often overestimates model si-
milarity, Schoeners D is a more conservative measure (Rodder and
Engler, 2011).

2.7. Final species distribution models

The final models were computed with climatic layers, the vegetation
layer and the statistically most significant landscape metric surfaces. All
predictors had the same raster resolution of 100 m x 100 m.

To assess the added value of incorporating landscape metrics as
predictors, we computed 1) one model with all parameters, i.e. land-
scape metrics, climatic variables, and the vegetation layer, 2) one

model with landscape metrics only, and 3) one model without land-
scape metrics. The latter null model served as a reference. The resulting
species distribution maps (Fig. 3) were visualised as a binary prediction
with 10 percentile training presence logistic threshold (Phillips and
Dudik, 2008).

3. Results
3.1. Target resolutions

The model outputs for the different test area resolutions performed
similarly well with respect to the resulting AUC and OR values. The
values for the AUC ranged between 0.843 and 0.890 and for the OR
between 0.346 and 0.369 for the 6 test area models (see Table 2 for the
chosen model resolutions). Due to the similar performances across re-
solutions, we thus decided to select the three ecologically most mean-
ingful scales for Coronella austriaca (Volkl and Kasewieter, 2003). One
represents the population scale (5 ha), one the metapopulation scale
(25 ha) and the catchment areas serve as natural ecological units.

3.2. Selection of landscape metrics

The individual contribution of the 26 test area landscape metrics on
model predictions got marginally stronger, the coarser the hexgrid re-
solution was. The permutation importance for the 5 ha model contained
five covariates with a zero percent permutation importance (contrast
grassland-compact settlement, percentage of pioneer vegetation, con-
trast planted-compact settlement, percentage of subalpine vegetation,
percentage of dwarf pine knee timber). The 25 ha model had four
covariates with zero per cent permutation importance (contrast grass-
land-compact settlement, percentage of pioneer vegetation, percentage
of dwarf pine knee timber, percentage of subalpine vegetation). The
model with the highest zone size (catchment areas) only had one layer
that did not contribute (percentage of subalpine vegetation). From the
initial 26 landscape metrics surfaces only 6 of the 5 ha model, 5 of the
25 ha model and 7 of the catchment areas model had a 4% or more
contribution to model building and thus were further used in the final
models. Table 3 provides an overview of all variables that were used for
the final models.

Despite some similarities in AUC and OR values between the dif-
ferent test area model results, we observed differences in geographic
space. Schoeners D (Schoener, 1968) showed greater differences and less
similarity than the I index (Warren et al., 2008). The highest Schoeners
D value was 0.817 between the 5 ha and the 10 ha model. The lowest
Schoeners D value, and therefore the highest difference showed the
catchment area and the 5 ha model with 0.676. The average D value
was 0.749. The highest I value was 0.971 between the 10 ha and the
15 ha model, the lowest I value was 0.907 between the 5 ha and the
catchment area model. The average I value was 0.942.
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Fig. 3. presents the final species distribution maps for the province of Carinthia, based on binary predictions with a 10-percentile training presence logistic threshold

plus an overview map.

3.3. The final models

The final models (Fig. 3) were calculated with the same settings as
the test area models. For all three model resolutions the best values

were shown by the models with all covariates: climatic, vegetation and
landscape metrics surfaces (Table 4). The best value was 0.888 from the
25 ha model. The 5 ha model showed an AUC value of 0.882 and the
catchment areas model AUC was 0.876. The AUC value of the model
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Table 2

AUC and OR values for the three chosen resolutions of the test area models.
Resolution AUC OR
5 ha 0.8642 0.3686
25 ha 0.8899 0.3461

catchment areas 0.8854 0.3511

without landscape metrics surfaces was 0.857 and the values for the
models with only landscape metrics were between 0.832 and 0.847,
increasing with the size of the statistical zones. Considering the models
without landscape metrics the model with the largest statistical surface
units showed the best results. We additionally tried to fit the models by
changing the settings (allow more feature classes and lower the reg-
ularisation multiplier), which increased the AUC values (between 0.859
for the 25 ha model with only landscape metrics and 0.928 for the 25 ha
model with all covariates).

Compared to the test areas model runs, Schoeners D and I statistics
both showed increased differences for all models in geographic space.
The lowest D value with 0.610 appeared between the 5 ha model with
landscape metrics only and the catchment areas model with all cov-
ariates. The highest D value was 0.850 between the 25 ha model with
all covariates and the 5 ha model with all covariates. The average D
value was 0.696. The I statistics again showed greater similarities be-
tween the models in geographic space. The lowest value was 0.848
between the 25 ha landscape metrics model and the model without
landscape metrics. The highest value was 0.980 between the 25 ha
surface with all covariates and the 5 ha surface with all covariates. The
average I value was 0.907.

Table 3
The selection of covariates that were used for the final models.
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Table 4
AUC values for the final models. Models with all covariates include climatic,
vegetation, and landscape metrics layers.

Model AUC Range AUC Standard Deviation
AUC

without landscape metrics 0.857 0.810-0.873 0,031

5 ha, all covariates 0.882 0.859-0.907 0,03

5 ha, only landscape metrics 0.832 0.791-0.881 0,038

25 ha, all covariates 0.888 0.859-0.919 0,033

25 ha, only landscape metrics 0.834 0.790-0.873 0,039

catchment areas, all covariates 0.876  0.845-0.907 0,03

catchment areas, only landscape 0.847  0.799-0.888 0,035

metrics

The correlations between the covariates showed high values be-
tween the climatic layers from —0.72 between the average equivalent
temperature in July and the average accumulated precipitation up to
0.99 between the mean snow cover duration and average start/end of
snow cover, excluding the mean annual global radiation, where corre-
lations were negligible with the other climatic layers. The landscape
metrics showed very low correlations with the climatic layers, only the
edge density and the average equivalent temperature in July sowed
values up to 0.47. The landscape metrics surfaces among each other
only showed higher correlations between the edge density, the Shannon
Diversity Index and the largest patch index that ranged between —0.67
for the Shannon Diversity index and the largest patch index and 0.4
between the edge density and the largest patch index. The catchment
areas model also showed higher correlations between the percentage of
light building density and the edge density of 0.45. The vegetation layer

Covariates final models

Covariates Test Area Models

5 ha - population level

25 ha - metapopulation level  catchment areas - natural ecological

units

percentage of cultivated grassland

percentage of light building density X

percentage of wetlands

percentage of pastures and moutainious hay madows

percentage of acre-grassland

percentage of dwarf pine knee timber

percentage of pioneer vegetation on boulder and rocks

percentage of subalpine and alpine grassland pastures

Shannon diversity index X

number of distinct connected classes

percentage of patch area that lies within the range of connection

percentage of the connection zone between the patches in comparison to the
statistical zone

Largest patch index X

contrast coverd with buildings- compact settlement

contrast covered with buildings- water bodies X

contrast covered with buildings- forest

contrast intensive grassland - compact settlement

contrast intensive grassland - water bodies

contrast intensive grassland - forest

contrast planted - compact settlements

contrast planted - water bodies X

contrast planted - forest

contrast grassland - compact settlement

contrast grassland - water bodies

contrast grassland - forest

edge density

vegetation layer

mean annual global radiation (kWh/m2)

average accumulated percipitation (mm)

average accumulated summer percipitation (mm)

mean snow cover duration (days)

average start of snow cover (day of the year)

average end of snow cover (day of the year)

average equivalent temperature in July ( °C)

Ea T T T B B B I ]

Eo T T T B R R I ]
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showed very low correlations between —0.25 and 0.33 with every
other predictor. Again, the larger the statistical surfaces get, the
stronger the correlations become.

4. Discussion

In contrast to the common assumption in species distribution
modelling that the environmental niche is the main descriptor of dis-
tribution ranges (Elith and Leathwick, 2009), also geographic factors
are influential. In this research, we were able to illustrate that the in-
tegration of landscape metrics as predictors can improve predictions of
a species distribution model. among all seven distribution models for
the smooth snake, the best AUC values resulted from combining all
available predictor covariates (landscape structure and environmental
variables). In contrast, the model with only environmental predictors
performed worse, and the models with only landscape metric surfaces
performed worst. These results confirmed our argument that a species’
distribution is not only determined by its environmental niche, but also
by functional relations in geographic space. Integration of such me-
chanistic aspects is especially important in non-equilibrium situations
of expanding invasive species or climate-driven range shifts (Elith and
Leathwick, 2009).

The most important landscape metrics covariates for Coronella
austriaca were the Shannon diversity index, patch sizes and contrast
metrics together with the egde density. That reflects some of the known
habitat requirements of Coronella austrica like the preference of edge
structures (Volkl and Kasewieter, 2003). When focusing on the contrast
metrics (percentage of edge length of a focus calss shared with contrast
classes), this also reflects the importance of edge effects for this species.
The Shannon diversity index shows that the habitat suitability gets
higher the more diverse the environment becomes. A more diverse
environment also means more niches for different species and therefore
more pray for Coronella austriaca. When examining the patch sizes C.
austriaca seems to prefer regions with light building desity. This could
also be an artefact because of the sampling intesity of the occurrence
data. More occurence data was sampled in regions where people live
and there still is enough room for snake habitats. So, areas with light
building density may be overrepresented in the sample points. To put
these results in a nutshell, the model confirms the known importand
landscape traits for the target species.

4.1. Spatial structure

To account for the spatial context, we included “contextual indices”
that summarised the characteristics within a spatial neighbourhood,
like for example in Ferrier et al. (2002). Unlike these authors we were
not interested in the surrounding ecological niches, but in the spatial
structure itself. While the results of our research unambiguously show
that distribution models improve with the integration of landscape
metrics, this effect may depend on the species of interest. For example,
Hasui et al. (2017) showed that the explanatory value of landscape
metrics greatly varied between taxonomic groups. For small terrestrial
mammals, the realtionship between habitat suitability and the land-
scape structure was confirmed by Amici et al. (2015).

Additionally, not only the scale of sampling is important, but also
the grain of the underlying landscape. In order to obtain landscape
metrics that are functionally relevant, it is important to select an ade-
quate thematic granularity of vegetation classes with respect to the
specific species under consideration. The resolution of the underlying
data needs to be adapted to a specific species, its particular space de-
mands and environmental requirements. This point often is neglected,
especially in studies were multiple species are considered (e.g.
Holzkamper et al., 2006; Schindler et al., 2013; Hasiu et al. 2017).

Also, the choice of adequate landscape metrics greatly depends on
the species. Schindler et al. (2013) investigated the predictive power of
landscape metrics for six very different taxa in more detail. They
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concluded, that patch shape, proximity, texture, diversity and patch
size often were significant, whereas similarity or contrast metrics did
not result in significant models. This partly is in accordance with the
findings of our research, where also diversity (Shannon Diversity Index)
and patch size (percentage of the area of the whole statistical zone
taken by the patch) performed well as predictors in the model. In our
research also contrast metrics showed good results. Although the target
species of these studies are very different, it can be concluded that
landscape metrics often contribute significantly to species distribution
models.

Landscape metric predictor surfaces add distinctly new information
to the environmental variables. We demonstrated in our research that
despite a similar predictive power of environmental predictors versus
spatial predictors, the Schoeners D analysis on map similarity showed
that resulting distribution maps are of distinctly different nature. This is
also confirmed by almost zero correlation between climatic and land-
scape layers, whereas the correlation between climatic layers is high.
Interestingly, the correlation between various landscape metrics layers
were also low. So each landscape metric predictor surface provides
fundamentally new information.

4.2. Spatial scale

Another important aspect to consider for the incorporation of
landscape metrics is the choice of scale. The spatial structure governs
ecological processes at multiple scales. Our results confirm a better
model performance for all “spatial” models. The mid-scaled cell re-
solution of 25 ha for the reference grid performed best. Accordingly,
Véaclavik et al. (2012) observed an improvement in the distribution
model of an invasive forest pathogen with the incorporation of spatial
autocorrelation. Like in our model spatial dependences where highest
in neighbourhoods of 200-400 m (12 to 50 ha). Also Schindler et al.
(2013) found that the best performing size for the landscape metric
reference areas for M. species was around 20 ha. Finally, Hasui et al.
(2017) analysed broader-scale neighbourhoods (12.5 km?), where the
effects were not so clear. In their study, consideration of landscape
metrics only had significant effects in 22% of the investigated target
species. In summary, our research confirms the findings in the literature
that the spatial structure of a landschape in the size of a few dozen
hectars significantly impacts the occurrence of species. This seems a
plausible size for a landscape reference grid, as it contains a re-
presentative sample of patches and enables fine scale modelling. This
scale represents processes at the metapopulation level.

4.3. Recommendations and outlook

This research presents an approach to integrate the spatial structure
of landscapes as predictors in species distribution models. The results
indicate, that this approach holds promise and should be investigated
further. It not only can enhance the predictive power of the model, but
can also be helpful in identifying the most important landscape traits
for the target species in the study area. However, the process to single
out relevant landscape metrics and adequate scale levels is laborious
and data hungry. Each decision had to be reflected and verified on the
basis of the available data. Further research to better understand the
role of scale and the adequacy of specific landscape metrics types may
help to reduce this effort.
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